CorrelatedMultiples: Spatially Coherent Small Multiples With Constrained Multi-Dimensional Scaling

Abstract

Displaying small multiples is a popular method for visually summarizing and comparing multiple facets of a complex data set. If the correlations between the data are not considered when displaying the multiples, searching and comparing specific items become more difficult since a sequential scan of the display is often required. To address this issue, we introduce CorrelatedMultiples, a spatially coherent visualization based on small multiples, where the items are placed so that the distances reflect their dissimilarities. We propose a constrained multi-dimensional scaling (CMDS) solver that preserves spatial proximity while forcing the items to remain within a fixed region. We evaluate the effectiveness of our approach by comparing CMDS with other competing methods through a controlled user study and a quantitative study, and demonstrate the usefulness of CorrelatedMultiples for visual search and comparison in three real-world case studies.

Thumbnail image of graphical abstract

Displaying small multiples is a popular method for visually summarizing and comparing multiple facets of a complex data set. If the correlations between the data are not considered when displaying the multiples, searching and comparing specific items become more difficult since a sequential scan of the display is often required. To address this issue, we introduce CorrelatedMultiples, a spatially coherent visualization based on small multiples, where the items are placed so that the distances reflect their dissimilarities. We propose a constrained multi-dimensional scaling (CMDS) solver that preserves spatial proximity while forcing the items to remain within a fixed region. We evaluate the effectiveness of our approach by comparing CMDS with other competing methods through a controlled user study and a quantitative study, and demonstrate the usefulness of CorrelatedMultiples for visual search and comparison in three real-world case studies.